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ABSTRACT: 

This paper was dealing with variables for MAS Cement Factory where evince many problems , more than one variable 

dependent and presence the problem of multicollinearity and so presence the correlation between the predictive variables and 

the dependent variables and so smallness size the research sample. used the method , Partial Least Squares PLS to Solve the 

problems above, also considered as one of the methods which dally methodically different in deduction the Components 

dependent on curing the correlation the presence between the predictive variables and the dependent variables , more over this 

method is more competence in dealing with the problems above. Through the statistical analysis, the PLS method it has 

succeeded in establishing the optimal Regression model for all three depended variables for the data of this paper.    

Keywords: Regression Model, Partial least square method, Multivariate Partial least square Regression, Univariate Partial least 

square Regression, Components.  

1. Introduction 

In the case of multiple linear regression equation faced 

multicollinearity, there is a correlation between predictive 

variables. The estimates produced in this case are influenced by the 

relationships between the predictive variables and not only by the 

relationship between the dependent variable and predictive 

variables. That the columns of the matrix of predictive variables 

and their classes must be linearly independent with each other 

(Jeeshim and Kucc ,2002) As well as the problem in the above, 

there is another problem is the small size of the sample involved 

also the problem of the existence of more than one  dependent 

variables are supported in the study, To diagnosis the above there 

is a method of the principal-component analysis (PCA), which aims 

at creating new orthogonal variables called components instead of 

predictive variables that are related to each other. This method 

deals with the correlation between predictive variables without 

taking correlation between the dependent variables and the 

predictive variables in the orthogonal component configuration 

process, Thus, there is a more efficient method than the above 

method, namely, the Partial Least Squares Analysis (PLSA) 

method, which aims orthogonal components. The correlation 

between the dependent variable and the predictive variables, as 

well as the correlation between predictive variables (Mita and 

Yan,2008) , It also to form orthogonal components in the case of 

other dependent variables that depend on the predictive variables 

are related to those predictive variables. In this case, the method is 

called the Multivariate PLS. This is the general case, and the 

specific case is the case of one dependent variable versus (m) of 

predictive variables called Univariate PLS (Garthwaite, 1994). 

The PLSA method is defined as one of the methods of reducing the 

dimension of the data used in the study. A specific number of 

orthogonal components was selected and analyzed instead of 

analyzing a large number of the original variables that were related 

with complex relationships. 

The main aim of this paper is to discuss the method of PLSA in 

both general (MPLSA) and specific (UPLSA) types, and to identify 

its different properties in addressing problem of multiple linear 

relation (multicollinearity) between the dependent variables as well 
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as the predictive variables between them and with the dependent 

variable, the application of real data from MAS Cement Factory, 

where the explanatory variables were electric power, black oil, 

stones and soil. With more than one dependent variables approved, 

namely Thermal Emission Factor resulting from the production 

process, the quantity of cement production and the quantity of 

clinker production for the period (2008 - 2020). 

2. Literature Review 

The statistical studies and research with the partial least square 

method as well as the statistical studies and research with the 

problem of multiple linear relations (multicollinearity) are very 

many and can be referred to some of the following: 

The researcher (Garthwaite, 1994) published a study comparing the 

method of Univariate PLS with five other regression methods, 

including the method of the lower squares and the main 

components in terms of their ability to reduce the dimension, ie 

reducing the number of explanatory variables in the estimated 

regression model through Three examples include eight (8) 

explanatory variables, while the second contains twenty (20) 

explanatory variables, the third contains 50 (50) explanatory 

variables, and each of the examples above contains one dependent 

variable and proves that the Univariate PLS method is the best and 

best at The process of reducing the dimension especially when the 

error variation is large and the size of the sample used in the search 

is small. 

Sakallioglu and Akdeniz (1998) also published research on the 

problem multicollinearity and its detection using the factor of 

distinctive values. Four methods were proposed to address the 

above problem, including the regression of principle components 

and the Ridge regression. 

(Jeeshim and Kucc ,2002)  . published a paper on the problem of 

multiple of linear relationships and their diagnosis through the use 

of the parameters of the variance amplification factor, the 

conditional index and the variance ratios. In addition, the 

researcher (Abdi, 2003) investigated the method of multivariate 

PLS with an applied example of data consisting of three dependent 

variables and four predictive variables. The final results of this 

example were presented using the above method. 

http://journals.uoz.edu.krd/
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(Maitra and Yan,2008) published a research that dealt with the 

method of principle components and the method of partial least 

square method and the comparison between two methods in terms 

of ability to reduce the dimension by using data of six variables 

predictive and one variable supported.     

3. Methodology 

3.1 Regression analysis and application problems 

A regression analysis is a statistical tool used to analyze the 

relationship between one or more Predictive Variables and a 

Dependent Variable. Regression analysis is one of the most widely 

used statistical methods in different sciences because it is used to 

describe the nature of the relationship between variables through a 

mathematical model and to know whether they are positive or 

inverse, linear or nonlinear. (Bluman , 2009) 

  The regression uses are data description, parameter estimation, 

prediction as well as control, Regression classified into: 

1-Linear regression is divided into: 

        a. Simple Linear Regression contains only one predictive 

variable, and its equivalent in general is written as follows: 

               (3.1) 

 

       b. Multiple Linear 

Regression includes several predictive variables, and its general 

equation form of predictive variables is as follows:  

         

      
(3.2) 

2- Non Linear Regression or Curvilinear Regression is also 

divided into two parts: 

       a. Simple Curvilinear Regression also contains only one 

predictive variable, and its equivalent in general is as follows: 

              
(3.3) 

 

       b. Multiple Curvilinear Regression includes multiple 

predictive variables and their equivalent to two predictive 

variables: 

i

n

2i

m

1imn

2

2i02

2

1i202i1i112i011i1000i
XXXXXXXXY         

(3.4) 

In the linear relationship studied there are properties or 

assumptions related to random error and others related to the 

adopted variable, and the hypotheses related to random error can 

be follows: (Poole and Farrell ,1970). 

First assumption: 
i
  random variable. 

The second assumption:. 0)(E
i
   

The third assumption: 

.
22

iii
)](E[E)var(


   

Fourth assumption:  
i
  Normal distribution was distributed. 

The previous four assumptions can be made in short form 

)σ(0, 2

ε
N . 

i
 ~  

Fifth assumption: 

)n,,2,1j,i(،ji0)(E),cov(
jiji

   

The sixth assumption: 0)X(E
ii
   

The seventh assumption: The predictive variables are not related 

to each other Non Multicollinearity In fact, the researcher 

encounters this hypothesis when the model studied includes more 

than one predictive variable, where there should be no linear 

multiplicity and thus the effect of each predictive variable can be 

identified on the separately dependent  variable .  

         As for the properties of the dependent variable, the 

distribution of this variable should be normal, predicted or mean 

distribution given in 
i10i

X)Y(EY   the case 

of simple linear regression. The variance of this variable is given 

in formula.
22

iii
)]Y(EY[E)Yvar(


  The 

above properties can be placed in short form 
i

Y ~

 )X( 2

i10
,


 N . 

One of the most important application problems faced by 

researchers is the lack of one or more statistical analysis 

hypotheses. The estimated model is judged to be an optimal model. 

The data represent best representation and can be relied on in 

predicting the future values of the dependent variable. (Jeeshim and 

Kucc, 2002). But this is not always the case. Often, problems arise 

that lead to a violation of one or more of the hypotheses of 

statistical analysis. One of the reasons for this problem is 

sometimes the limited number of views used in the experiment or 

research. Choosing the appropriate sample size for the search 

problem is often an effective way to achieve accurate and reliable 

estimates for making wise decisions or achieving the scientific goal 

(Henry, 2013), also the Problem of Multicollinearity when this 

problem is present, this leads to the lack of all or most of the 

analysis hypotheses in the ordinary least squares method (OLS) 

(Jeeshim and Kucc, 2002). As well when studying a particular 

phenomenon, there is more than one dependent variable dependent 

or influenced by the explanatory variables themselves, and then 

there is a correlation between the dependent variables and the 

explanatory variables, in addition to the correlation between the 

explanatory variables. In addition, t-tests to test the significance of 

the coefficients of the explanatory variables in the regression model 

become suspect (Disatnik and Sivan, 2014). 

3.2 Diagnosis of Multicollinearity 

The problem of Multicollinearity is defined as a high degree of 

correlation or linear dependence between two or more explanatory 

variables in the multiple regression models, For the purpose of 

diagnosing the problem of linear multiplicity in a regression model 

that contains two or more coefficient variables, we follow the 

following: 

1- Correlation Matrix for explanatory variables: 

       Simple correlation is the simplest measure of linear 

interference detection. ]1)X,X(r[
ji

  If this indicates a 

complete linear relationship between
i

X  and
j

X , where R  is 

the correlation matrix between the explanatory variables, if the 

linear form can be expressed in a straight line, then there is a 

linear relationship between
i

X  and
j

X , if the coefficient of 

correlation between
i

X  and
j

X  negative, Take the following 

form: (Bayonne and etc., 2020) 

0XXorXX
jiji
  

  

         If the simple correlation between
i

X  and positive
j

X , the 

linear relationship takes the following form: 

 

0XXorXX
jiji
  

If more than two variables have a linear relationship, it is not 

necessary )X,X(r
ji

 to be close to the correct one or even 

ii10i
XY  
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large. For this reason, the correlation scale alone is insufficient in 

detecting linear interference. 

2- The Eigen Values and Eigen Vectors 

The idea of equations, Eigen and vectors is to move a vector from 

a given field by a given matrix to another area in which the vector 

is the same multiplied by another numerical value. Where the result 

of multiplying the Eigen vector v  in the square matrix A  with 

dimensions m*m produces the same vector after it hits the value of 

Scalar is  called the Eigen root of the matrix A , that is, 

 

0



vAv

vAv




 

 

0)(  vIA                                    (3.5) 

According to Rule Cramer, a trivial solution can have this 

equation in one case if the specified matrix of a matrix A  is 

zero, ie: 

0 IA                                                       (3.6) 

The equation above is called the Characteristic Equation of the 

matrix A , and its solution gives a distinct formula that takes the 

following formula: 

0CCC
01

1m

1m

m  


           (3.7) 

It is a polynomial equation in  a class m, so it has its solutions 

m or roots
m21

,,,   . The process of calculating the 

roots and Eigen vectors of the methods of detection of the 

multiplicity of linear relationships, if the value of one of the roots 

equal to zero indicates that there is a linear relationship is 

complete, and versa when the equal one indicates that the absence 

of any linear relationship. That is, the closer the value of the 

characteristic root than zero, the greater the relationship between 

the predictive variables and the observation, we can infer the most 

important variables that are significant in comparison with the 

other values in the characteristic vector.( Assaker and etc.,2014) 

3- Condition  Number and Condition Index (CI ): 

       Belsley, Kuh and Welsch developed the concept of the 

conditional number scale in 1980 to the CI scale shown in the 

following (Rawlings, et.al., 1998) 

a-Condition  Number: 

min

max




Φ                                                    (3.8) 

They represent
max
 ,

min
  the largest and smallest 

characteristic of the matrix XX' , respectively. I propose this 

measure Belsley, Kuh and Welsch in 1980. If the value of this 

scale is large, this indicates that there is a linear overlap between 

the explanatory variables and this parameter is weak. It is worth 

mentioning that the value of this measure is equal to the correct 

one in the case of the orthogonal matrix. 

b- Condition  Index (CI ) 

j

max

j
CI






                                                  (3.9) 

The conditional guide for measuring linear multiplicity is based 

on the value of the characteristic root. In 1980, Belsley, Kuh and 

Welsch suggested that if the values j
CI

of the conditional 

directory of the 10 limits indicated that the degree of linear 

multiplicity was weak, if (
100CI30

j


) this 

indicates that the degree of linear multiplicity is moderate( j
CI

>100)High linearity. 

 

4- The Variance Proportion 

        The variance ratios are analyzed in terms )(Var


β  of the 

matrix XX' , which can be expressed 'VDV as a V  

orthogonal matrix. Its diagonal columns are characteristic of the 

matrix XX'  andD  diagonal matrix is the main diameter 

representing the characteristic values of the matrix XX' , 

''

00

00

00

'

1m

2

1

VDVVVXX 




































           

(3.10) 

1212 )'()'()(Var 





 VDVXX β                    

(3.11) 

Each component of the variance proportion
j i

P  can be found to 

vary the estimated parameter
i



  by using the following formula: 

)(Var

v

P

i

j

2

i j

2

j i 









                                                                   

(3.12) 

Since it is )(Var
i



  the variance of the estimated parameter

i



 , calculated using the following formula: 

 


















 1m

1j
j

2

i j2

i

v
)(Var


                                                

(3.13) 

The percentages of variance in the identification of any 
i



 value 

are affected by the value when the ratio is greater than 0.50 

(Akdeniz, 2000). 

5- Variance Inflation Factor  (VIF) 

    This parameter measures the inflation of the variance of the 

estimated parameters for all the explanatory variables in the 

model. This measure is based on the examination of the main 

diagonal elements of the matrix
1)'( XX , where (

j
VIF ) is 

equal
j j

a , which represents
12

j
)R1(  and 

2

j
R  the 

coefficient of determination for regression
j

X  over the rest of the 

explanatory variables. Some researchers have pointed out that if (
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10VIFa
jj j
 ) this amount is sufficient to ignore the 

variable 
j

X from the analysis or use another method as a 

substitute for the OLS in the estimation. (Weaving and etc,2019). 

3.3 Partial Least Squares Analysis (PLSA)   

        The components derived from the PLS analysis are specific to 

the data values of both the explanatory variables and the dependent 

variable. They also have the potential to analyze a matrix of 

predictive variables with a matrix of dependent variables to find 

orthogonal components in cases where more than one life 

phenomenon or variable is required at the same time So that all 

dependent variables are dependent on the explanatory variables 

themselves and linked to them, and the PLS method works to take 

into account the correlation between the variable or the variables 

adopted and the predictive variables as well as the correlation 

between the variables between them, On the construction of the 

components resulting from the analysis, as in PC, OLS is used for 

the adopted variable or for each dependent variable against the 

components derived from the PLS analysis. 

The PLS regression method is a new method of adopting regression 

equations. Recently, it has attracted the attention of many 

researchers with several modern articles. They adopt new 

explanatory variables, often called Factors or Component 

components, where any component is a linear combination of 

explanatory and variables or dependent variables These 

components are orthogonal vectors, also called latent vectors 

(Rosipal and Kramer, 2006). 

The PLS regression method is particularly useful in constructing 

prediction equations when there are a large number of explanatory 

variables in the experiment under study and the sample data for 

observations of the variable are few , we have two type of PLSA, 

The first is called the Univariate PLS. This method is used to 

predict the values of one dependent variable, which is a comparison 

of predictive variables. The components of this method are derived 

from an analysis with predictive variables and then regression OLS 

for the dependent variable against the resulting components of the 

Univariate PLS analysis. This case is a special case, the second case 

is the general case and is called the Multivariate PLSA This method 

is applied in the case of L of the dependent variables with predictive 

variables. The components of this method are derived from the L 

analysis of the variables adopted with predictive variables and then 

the regression of OLS for each dependent variable against the 

resulting components of the Multivariate PLS.( Garthwaite , 1994). 

The PLS method is used in many fields, including organic 

chemistry, physics, industrial control and social science, and the 

forefront of its work was in the late 1960s by Wold in 1966 in the 

field of economics, the discoverer of this method, and in 1975 it 

was presented under the title Non Linear Iterative Partial Least 

Squares (NIPALS) and became common in medicine, especially in 

clinical treatments where the number of observations (number of 

patients) with the large number of explanatory variables of the 

patient’s symptoms with the number of variables The approved 

level of health of the patient with the improvement of his health 

condition. (Haenlein and Kaplan , 2004 ) . 

3.4 Partial Least Squares Algorithm 

On the existence of both array matrix X  Independent matrix and 

matrix Y  variables dependent if there is more than one 

supported variable or vector Y in the case of a single dependent 

variable, namely in terms of the standard formula. (Geladi and 

Kowalski ,1986) point out that for any component, 

h,,2,1j  ;  
j

t  In the form PLS should follow the 

following steps: 

1 – Taking random values of random vector 
start

u is a number of 

values that are taken randomly from the matrix of dependent 

standard variables Y  and the number of these values must be 

equal, which represents the number of views of all variables in the 

study in question and also the total of these values should be zero 

, And if only one dependent variable exists in the analysis used 

(Univariate PLS), each 
start

u new component calculated is the 

same standard variable Y . 

2- Finding the horizontal vector 
old
'w using the formula

startstartstartold
''' uuXuw   and dimensions of this 

vector is p1 where p the number of explanatory or 

predictive variables are represented in the experiment under 

study, noting at this point that there is an overlap between the 

predictive variables s
,

X and the dependent variable Y  or the  

dependent variables s
,

Y  in order to solve the correlation 

problem existing among them. 

3- Finding the horizontal vector
new
'w  as standardized through 

the formula
oldoldnew
''' www  , and the resulting 

vector
j

w  of the analysis are orthogonal vectors meaning that 

the process of addressing the problem of correlation between the 

variable or variables dependent and predictive variables have been 

successful, and the dimensions of the matrix W  whose columns

j
w  represent the orthogonal vectors ar IWW ' e, I  

Identity Matrix. 

 4- Finding the vertical vector t , which is a primary factor 

extracted from the matrix X using the formula

newnewnew
' wwXwt  , where the sum of the values 

of that vertical vector t  is zero. 

The following steps will be for the sector of the dependent 

variable Y  or dependent variables s
,

Y : 

5 – Finding the horizontal vector 'q  through the formula

ttYtq ''' , which is one of the loads of the matrix Y  

and in the case of a single variable 'q is a single value is only 

one. 

6 – Finding the vertical vector u using the formula 

qqYqu ' and the sum of the values of this vector is 

zero. 

   The next step is the convergence test: 

 

7- Compare the vector t  in step 4 with each of the previous 

iterations )',,'(
old

quw . If it is equal to one of them or there 

is very little difference, then,
j

tt  , 
jnew

ww   

 where 
j

uu  ، 
j

qq   h,,2,1j  and then move 

to step 8, otherwise go to step 2 and the vector
start

u  is the 

vertical vector u that Calculated at step 6 above and so on at 

each frequency during the calculation of a single component, this 
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comparison was designed to obtain orthogonal components
j

t . 

Thus PLS analysis addresses the correlation problem between 

predictive variables and variables or dependent variables by 

calculating orthogonal factors
j

w  and at the same time, the 

problem of correlation between predictive variables is addressed 

by calculating the orthogonal factors
j

t . 

In the next step, the matrix loads X are calculated as follows: 

8 -Calculate the horizontal vector
j
'p  as in the formula

jjjj
''' ttXtp  . 

9- To find the regression coefficient
j

b  due to the regression 

relation between
j

u  the dependent variable and 
j

t represents the 

explanatory variable where 
j

b it is only one value for each 

component and is
j

t  calculated as:It is  
jjjjj

''b tttu  

used for the purpose of finding the matrix
j

F , the matrix Y  of 

multivariate PLS or finding the vector
j

F  for the only dependent 

variable The trial under study (Univariate PLS). 

10 – The matrices of the residues 
j

E ,
j

F and the matrix X , 

matrix or vector Y  respectively are found for the
j

t  component 

as follows: 

  
jjj1jj
'b qtFF 


  ،  

jj1jj
'ptEE 


   where  

0
EX   &

0
FY    

11- At the above point, the calculation of the first component
j

t  

and the purpose of calculating the
1j

t  following component ends 

with the first step of the algorithm and the same mechanism. Both 

the vectors
j

w  ;  
j

p  ; 
j

q   and the regression 457coefficient
j

b
t must be stored for the purpose of predicting the future values of 

the variable or the dependent variables



Y . 

 

There are some notes to follow when applying the algorithm 

above: 

1) If the private sector of the dependent variables has only one 

dependent variable then step 7 of the convergence test can be 

deleted and there is no need for additional repetition. 

2) After calculating the first component, the matrix X  in steps 2, 

4 and 8 as well as the matrix or vector Y in steps 5 and 6 are 

replaced by the corresponding matrix of residues
j

E  and matrix 

or vector
j

F respectively. 

4-Application part 

           In this paper we studied three dependent variables and four 

independent variables all variables depend on them, the first 

dependent variable Y1 in environmental pollution is the thermal 

emission coefficient produced by the cement production process. 

The remaining variables are the quantity of production for 

cementY2 and clinkerY3, respectively. Mas Cement Plant for the 

period 2008-2020,In addition the explanatory 

variables(independents) were electric power X1, black oil X2, 

stones X3 and soil X4. The sample size n for each of the above 

variables is 12 observations along the search period. 

Since one of the assumptions of the regression analysis of the 

dependent variable Y is to follow the normal distribution where it 

was tested by the statistical testing Kolmkrov Smirnov and found 

that it does not follow the normal distribution so was taken one of 

the types of transformation.(Square Root) at significant level 0.05. 

All the implementations of the study on real data applications are 

carried out using R version (3.4.4) and Minitab version (17). 

 

The results of the Multicollinearity are as follows: 

 

1-  Correlations Coefficients

             

Table 1:Correlation coefficients between predictive and dependent variables. 

2-The  Condition  Number   = 1.100909628E+10 

Correlation: sq.Y1, sq.Y2, sq.Y3, x1, x2, x3, x4  

 

        sq.Y1   sq.Y2   sq.Y3      x1      x2      x3 

sq.Y2   0.919 

        0.000 

 

sq.Y3   0.973   0.966 

        0.000   0.000 

 

x1     -0.325  -0.370  -0.314 

        0.065   0.034   0.075 

 

x2      0.970   0.950   0.977  -0.304 

        0.000   0.000   0.000   0.086 

 

x3      0.944   0.961   0.982  -0.310   0.976 

        0.000   0.000   0.000   0.079   0.000 

 

x4      0.688   0.693   0.693  -0.418   0.673   0.673 

        0.000   0.000   0.000   0.015   0.000   0.000 
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3-The Condition Index (
j

CI ) and  The Eigen Value 
j

  ،  . 

Table 2:Conditional index and Eigen values 

 

Number 
j

CI   
j

    

1 1 1.71308E+13 

2 5.174111954 6.39891E+11 

3 82.31203807 2.52843E+09 

4 7421.061667 3.11061E+05 

5 1.100909628E+10 1.41343E-02 

                                                
 

4-The Variance Proportion  

Table 3:Values of proportions of parameters
  

4X 3X 2X 1X intercept NO. 

5.456931E-03 0.012903818 1.138575E-06 1.068254E-23 8.251041E-33 1 

0.968994355 0.052316533 2.659519E-06 2.952366E-24 0.000000 2 

0.017832609 0.915702814 0.91556092 2.324165E-17 1.615597E-26 3 

7.717045E-03 0.01907709 0.084435505 1.682313E-08 1.227287E-17 4 

0.000000 0.000000 0.000000 1.000000 1.000000 5 

 

 

5- The Variance Inflation Factor (
j

VIF )   

Table 4:Values of estimation parameters
j

  

 

Predictive variable 
j

VIF  

1
X  

1.256 

2
X  

20.810 

3
X  

20.843 

4
X  

2.066 

                                                 

6-The Eigen Vectors ( s
,

j
v ) 

Table  5:Eigen Vectors matrix 

 

  

v1         v2       v3       v4        v5 

 

-0.000001  -0.000000  -0.000017  -0.005197   0.999986 

-0.000187  -0.000019  -0.003351  -0.999981  -0.005197 

-0.091373   0.026990  -0.995445   0.003353   0.000000 

-0.927711   0.361025   0.094944  -0.000152  -0.000000 

-0.361945  -0.932166   0.007949   0.000058  -0.000000 

 

 

Interpreting the results of criteria for detecting the 

Multicollinearity: 

1- The value of the conditional number equals 1.100909628E + 

10. This value is very large. This indicates that the problem of 

multiple linear relationships between predictive variables is very 

high. 

2- There is a correlation between the two predictive variables of 

black oil and stones by noting: 

The simple correlation coefficient between the two variables in 

the above correlation matrix is 0.976 and the value of P-Value for 

that correlation is 0.000 indicating the significance of the 

correlation between the two variables above at 0.05 = and the 

correlation of the positive type to a high degree. Also 

1m,,2,1j  

)p(
j i
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j
VIF  Values for each of the two variables above are equal to 

20.8 and this value is too high and greater than the value of 10. 

This indicates a correlation between the two variables above. 

 

3 – The correlation between the two predictive variables electrical 

power and soil by noting: 

 The correlation coefficient between the two variables above is -

0.418, where the value of P-Value for that correlation is 0.015 and 

at the significance level of 0.05. This correlation is negative. 

It was observed that the characteristic value of
5.min
   

0.0141343 was close to zero. This indicates the existence of the 

problem of linear multiplicity. This value corresponds to the fifth 

characteristic vector
5

v . In this vector, the first value among its 

values was 0.999986. This value corresponds to the first predictive 

variable, This variable is the cause of the above problem.as well 

This variable corresponds to the characteristic value
5
 and the 

fifth conditional index
5

CI , which is equal to 1.100909628E + 10, 

where it is noted that the last value is very high and larger Of the 

value of 100 indicates that the degree of linear multiplicity caused 

by the above variable is very high. 

        It is possible to say that the problem of linear multiplicity is 

very high and that all predictive variables cause the above problem. 

Also, by observing the correlation matrix, there is a significant 

correlation between each dependent variable. 

Now ,the PLSM has two first cases: the general state is called the 

MPLS method and the second one is the special case called the 

UPLS method. 

MPLS method 

In this method, components were calculated by analyzing the 

standard dependent variables matrix together with the matrix of 

standard explanatory variables at the same time using the micro-

squares algorithm. The components that were calculated were four 

standard and orthogonal components. The first and second 

components were selected as predictive variables in the OLS 

regression analysis for each dependent variable The other 

components are insignificant and their presence weakens the results 

of the OLS statistical analysis of the estimated model for each 

dependent variable. The name or description of the first and second 

components can be given by using the predictive variables in each 

selected standard component.

  

Table 6: 
1

Y.sq Versus MPLS by OLS 

 

Regression Analysis: sq.Y1 versus PCP1, PCP2  

 

The regression equation is 

sq.Y1 = 22.3 + 4.99 PCP1 + 2.13 PCP2 

 

Predictor     Coef  SE Coef      T      P    VIF 

Constant   22.3178   0.4549  49.07  0.000 

PCP1        4.9933   0.2809  17.78  0.000  1.000 

PCP2        2.1288   0.5373   3.96  0.001  1.000 

 

S = 2.31931   R-Sq = 93.5%   R-Sq(adj) = 93.0% 

PRESS = 161.255   R-Sq(pred) = 91.55% 

 

Analysis of Variance 

Source          DF       SS      MS       F      P 

Regression       2  1784.13  892.06  165.84  0.000 

Residual Error  23   123.72    5.38 

Total           25  1907.85 

 

There are no replicates. 

Minitab cannot do the lack of fit test based on pure error. 

Durbin-Watson statistic = 1.59791 

 

Predicted Values for New Observations 

New Obs    Fit     SE Fit        95% CI              95% PI 

  1      19.9207  0.657308  (18.5610, 21.2805)  (14.9339, 24.9076) 

  2      18.1575  0.761490  (16.5822, 19.7327)  (13.1076, 23.2073) 

  3      20.1061  0.791391  (18.4690, 21.7433)  (15.0367, 25.1756) 

  4      23.9375  0.465798  (22.9739, 24.9011)  (19.0439, 28.8312) 

Lack of fit test 

Overall lack of fit test is significant at P = 0.024 

 

 

 

Versus MPLS by OLS 
2

Y.sq :Table 7 

  

Regression Analysis: sq.Y2 versus PCP1, PCP2  

 

The regression equation is 

sq.Y2 = 685 + 165 PCP1 + 54.1 PCP2 

Predictor     Coef  SE Coef      T      P    VIF 

Constant    684.98    16.18  42.34  0.000 
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PCP1       164.643    9.992  16.48  0.000  1.000 

PCP2         54.09    19.11   2.83  0.009  1.000 

 

S = 82.5024   R-Sq = 92.4%   R-Sq(adj) = 91.7% 

PRESS = 206724   R-Sq(pred) = 89.96% 

Analysis of Variance 

Source          DF       SS      MS       F      P 

Regression       2  1902449  951224  139.75  0.000 

Residual Error  23   156553    6807 

Total           25  2059002 

 

There are no replicates. 

Minitab cannot do the lack of fit test based on pure error. 

Durbin-Watson statistic = 1.34370 

 

Predicted Values for New Observations 

New Obs   Fit     SE Fit        95% CI              95% PI 

  1     593.469  23.3818  (545.100, 641.838)  (416.078, 770.860) 

  2     532.727  27.0878  (476.691, 588.762)  (353.094, 712.360) 

  3     631.462  28.1514  (573.227, 689.698)  (451.131, 811.794) 

  4     739.175  16.5694  (704.898, 773.451)  (565.098, 913.252) 

Lack of fit test 

Overall lack of fit test is significant at P = 0.016 

 

Versus MPLS by OLS 
3

Y.sq:Table 8  

   

Regression Analysis: sq.Y3 versus PCP1, PCP2  

 

The regression equation is 

sq.Y3 = 658 + 175 PCP1 + 78.9 PCP2 

Predictor     Coef  SE Coef      T      P    VIF 

Constant    657.69    10.33  63.65  0.000 

PCP1       175.380    6.381  27.48  0.000  1.000 

PCP2         78.86    12.21   6.46  0.000  1.000 

 

S = 52.6882   R-Sq = 97.2%   R-Sq(adj) = 97.0% 

PRESS = 85054.0   R-Sq(pred) = 96.26% 

 

Analysis of Variance 

Source          DF       SS       MS       F      P 

Regression       2  2212681  1106341  398.53  0.000 

Residual Error  23    63849     2776 

Total           25  2276530 

There are no replicates. 

Minitab cannot do the lack of fit test based on pure error. 

Durbin-Watson statistic = 1.58754 

 

Predicted Values for New Observations 

New Obs    Fit     SE Fit       95% CI              95% PI 

  1      576.664  14.9322  (545.775, 607.554)  (463.378, 689.951) 

  2      515.392  17.2989  (479.606, 551.177)  (400.674, 630.110) 

  3      575.086  17.9782  (537.895, 612.277)  (459.921, 690.250) 

  4      714.382  10.5816  (692.492, 736.272)  (603.212, 825.552) 

Lack of fit test 

Overall lack of fit test is significant at P = 0.007 

 

 

 

Interpreting regression results OLS for each supported variable 

against MPLS components 

Note from the previous results provide all statistical analysis 

hypotheses for the regression analysis of OLS and each estimated 

regression model, The explanatory power based on each regression 

model is estimated to be high, indicating that the estimated model 

has a high explanatory power in interpreting changes in the 

dependent variable, The significance of the statistical laboratory F 

for all estimated regression models indicates that at least one of the 

regression coefficients is significant (different from zero). The 

statistical significance of the regression t is also significant for all 

the regression coefficients and the estimated regression models all 

at the mean level of significant 0.05. This indicates that each 

regression parameter is estimated, is significant and differs from 

zero. 

UPLS method 

In this method, standard components were calculated by analyzing 

the matrix of standard predictive variables with each standard 

dependent variable separately. The above analysis was applied 

three times, ie, the number of dependent variables included in the 
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research. Each time standard components were obtained for the 

dependent variable used In the Univariate PLS statistical analysis, 

the components of each dependent variable differ from the 

components of any other dependent variable. The components that 

were calculated at each time the above statistical analysis was 

performed were four standard and orthogonal components. The 

other components that were calculated are not significant and their 

presence weakens the results of the statistical analysis of OLS and 

all the dependent variables.

 

Table 9:
1

Y.sq Versus UPLS by OLS 

Regression Analysis: sq.Y1 versus Comp1, Comp2  

 

The regression equation is 

sq.Y1 = 22.3 + 5.00 Comp1 + 2.09 Comp2 

 

Predictor     Coef  SE Coef      T      P    VIF 

Constant   22.3178   0.4545  49.10  0.000 

Comp1       5.0017   0.2809  17.81  0.000  1.000 

Comp2       2.0867   0.5353   3.90  0.001  1.000 

 

S = 2.31748   R-Sq = 93.5%   R-Sq(adj) = 93.0% 

PRESS = 161.383   R-Sq(pred) = 91.54% 

 

Analysis of Variance 

Source          DF       SS      MS       F      P 

Regression       2  1784.32  892.16  166.12  0.000 

Residual Error  23   123.53    5.37 

Total           25  1907.85 

There are no replicates. 

Minitab cannot do the lack of fit test based on pure error. 

Durbin-Watson statistic = 1.58383 

 

Predicted Values for New Observations 

New Obs    Fit     SE Fit       95% CI              95% PI 

     1  19.9783  0.662285  (18.6083, 21.3483)  (14.9923, 24.9643) 

     2  18.2246  0.767350  (16.6372, 19.8120)  (13.1746, 23.2747) 

     3  20.0435  0.799081  (18.3905, 21.6965)  (14.9725, 25.1146) 

     4  23.9781  0.465206  (23.0157, 24.9404)  (19.0883, 28.8678) 

Lack of fit test 

Overall lack of fit test is significant at P = 0.025 

 

 Table 10:
2

Y.sq  Versus UPLS by OLS 

Regression Analysis: sq.Y2 versus Comp1, Comp2  

 

The regression equation is 

sq.Y2 = 685 + 164 Comp1 + 61.6 Comp2 

Predictor     Coef  SE Coef      T      P    VIF 

Constant    684.98    15.87  43.15  0.000 

Comp1      164.037    9.784  16.77  0.000  1.000 

Comp2        61.57    19.30   3.19  0.004  1.000 

 

S = 80.9453   R-Sq = 92.7%   R-Sq(adj) = 92.0% 

PRESS = 195678   R-Sq(pred) = 90.50% 

 

Analysis of Variance 

Source          DF       SS      MS       F      P 

Regression       2  1908302  954151  145.62  0.000 

Residual Error  23   150699    6552 

Total           25  2059002 

 

There are no replicates. 

Minitab cannot do the lack of fit test based on pure error. 

Durbin-Watson statistic = 1.33704 

 

Predicted Values for New Observations 

New Obs    Fit    SE Fit       95% CI              95% PI 

     1  589.249  22.1415  (543.445, 635.052)  (415.649, 762.848) 

     2  527.532  25.5700  (474.637, 580.428)  (351.928, 703.136) 

     3  634.188  26.6275  (579.105, 689.271)  (457.913, 810.463) 

     4  736.424  16.2958  (702.713, 770.134)  (565.616, 907.231) 

Lack of fit test 
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Overall lack of fit test is significant at P = 0.013 

 Versus UPLS by OLS 3
Y.sq:11 Table 

Regression Analysis: sq.Y3 versus Comp1, Comp2  

 

The regression equation is 

sq.Y3 = 658 + 176 Comp1 + 75.4 Comp2 

 

Predictor     Coef  SE Coef      T      P    VIF 

Constant    657.69    10.47  62.84  0.000 

Comp1      175.929    6.474  27.18  0.000  1.000 

Comp2        75.37    12.27   6.14  0.000  1.000 

 

S = 53.3686   R-Sq = 97.1%   R-Sq(adj) = 96.9% 

 

PRESS = 87777.4   R-Sq(pred) = 96.14% 

 

Analysis of Variance 

Source          DF       SS       MS       F      P 

Regression       2  2211022  1105511  388.14  0.000 

Residual Error  23    65509     2848 

Total           25  2276530 

 

There are no replicates. 

Minitab cannot do the lack of fit test based on pure error. 

 

Durbin-Watson statistic = 1.57498 

 

Predicted Values for New Observations 

New Obs    Fit    SE Fit       95% CI              95% PI 

     1  578.617  15.2661  (547.037, 610.198)  (463.788, 693.447) 

     2  517.888  17.7068  (481.259, 554.517)  (401.569, 634.208) 

     3  573.910  18.3464  (535.958, 611.863)  (457.167, 690.653) 

     4  715.030  10.7170  (692.861, 737.200)  (602.425, 827.636) 

 

Lack of fit test 

Overall lack of fit test is significant at P = 0.009 

    

 

From the above Results findings, all statistical analysis hypotheses provide for the analysis of the OLS regression and for each estimated 

regression model. That we discussed pervious (i.e R2,R adj.,F test…etc). 

. 

 5. Conclusion 

The most important conclusions reached by the research through 

the practical side are: 

1-The existence of the problem of multiple linear relationships 

between the predictive variables among them as well as the 

correlation between the predictive variables and the dependent 

variables as well as the problem of small size of the sample 

involved in the research at MAS cement factory. This led to the 

failure of the OLS method to achieve an optimal regression model.  

2 - The research revealed that the models extracted in the form of 

small squares and PLS in both public and private cases MPLS and 

UPLS respectively were efficient mentioned in the tables 7-11. 

3- Reducing the dimension of the data, as the PLS method,  its 

general and specific cases, was able to reconcile a regression model 

in which all the hypotheses of the statistical analysis are available 

and for all the approved variables included in the research by 

adopting only two of the orthogonal standard components. 
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 كارطةها ماس يا ضيمة نتووَى ل ثاريزكةها سولةيمانيىَدطةل جيبة جيكرن لسةر  جوارطوشةيين بةشةكى ريكين  
 

 :ثوختة 

 نىَيبشيدةملدةست دطةل  طورانكاريين ث يينطورانكار زوربةيا وان دكةت,طةلةك ئاريشة دياردبن ولةيمانيىَاريزكةها سثيمةنتووى )ماس( ل ضنكاريينَ ل كارطةها طورا ندطةل وا ىَةريدةكولينة سةرةفئةظ 
ين يوشةطريَكا جوار بكة , هاتيية بكارئينان ضووىَ  نموونةكا بظةكولين ظىَ ةيىَ ارب,راستة قة )معتمد( و طورانكاريين دةملدةست  ثيشبينىَ كرىطورانكاريين   ثةيوةنديىَ دطةل , وهةروةسا هةبوونا كرينة

نديين ةةيوثارةسةركرنا  ض بو فبةربةلا ئانكووروون  اظ ضريكينَ بةردةستكرد   شين, ئةظ ئاري بةرى نهوةت يين كةكولينة ديفضوونا  ئاريشا بف, ئةظ رابردوونا ئاريشةيين ارةسةركرض( بوPLS)بةشةكى 
و ثيشبينىَ كرى ن دناظبةرا طورانكاريين ةدوبى ئةظينَ  رويثيظة طريداةيين استئةظ ئارو ئةظين  كورت ,  وازاجي وان ريكَين ثروطرامىَ انوهةروةسا ثةس ثيشبينىَ كرى  طورانكاريين راستة راست دناظبةرا 

 ينواركوشةيض طورانكاريين طةهشتن بو اناشثوشيكارى ل سةرى دناظبةرا ئامارين  ينين مةدياركرةوةكرن ئيتهبدطةل ئةوان ئاريشةيا اش بةريةكا دضةندىَ سةرة طورانكاريين راستة راست , سةرةراى وىَ
ظان  سةربشت بةستنىَ طورانكاريين دةستكرد وراستة راست وبتنىَ  وبوَهةمىشة روذىَ ثاطوبيتكا   كرى  بوينثيشب ين ئةظينبرربدةئةم رازيبوونا خوَ  ت يَظدضةندىَ  سةرةراى وىَ (PLS) ووك بةشىَضب

 ين.بكة هةردوو خالا 

 

 

 

 صنع ماس للأسمنت بمحافظة السليمانيةعلى مبيق مع التططرق انحدار المربعات الصغرى الجزئية 

 :الملخص

حنث ظهرت مشلللاعل  ،  ذ إو د أ، رعمر مت متغير معتم، داح، مع دأ ش مشلللتاة التع،ش ا الم غير المتغيرات التنبذدة دعذل    تعامل هذا البحث مع متغيرات معمل إسمنت الماس في محافظة السلللانما نة
لمعاية المشلللاعل  ر ع  ذ غا تبارها مت الارا    PLSالمرغعات الصلللغرلج اية نة صلللغر حعي  ننة البحثق لتم، س إدلللتر،اة  ردتمة  فضلللعن  تدأ ش إرتباط غير المتغيرات التنبذدة دالمتغيرات المعتم،  

ت  ات معتم،   اى معاية الإرتباط الم أ ش غير المتغيرات التنبذدة  الشا عة في حل مشتاة تع،ش الععقات ا انة غير المتغيرات التنبذدة دعذل  غ صفها مت الارا   التي لها منهعنة مختافة في ادترعص الم    
تمتنت مت ت فن  رنم وج إنح،ار  PLS ذ فضللعن  ت ع  ها عف    في التعا لم مع المشللاعل ر ع  ن دمت اعت التحانل الإحصللا لم س الت صللل إق را  ردتمة المرغعات الصللغرلج اية نة دالمتغيرات المعتم،  

 تتمبانة لتل المتغيرات المعتم،  دول  مت اعت الإ تماش  اى مت  ير فتمط نرممل ديمنع المتغيرات المعتم،  المعثة ذ فضعن  ت ول  تف قها مت حنث التم،ر   اى التنبذ غالتمني المس
 نت  اتانم وج الانح،ارق ردتمة المرغعات الصغرلج اية نةقانح،ار المرغعات الصغرلج اية لم المتع،شق انح،ار المرغعات الصغرلج اية لم الاحاشيقالم :الدالةالكلمات 


